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The problem of numerically integrating general elliptic differential equations in irregular 
two and three dimensional regions is discussed. The method used numerically computes a 
transformation of the given region into a rectangular region. The numerical coordinate 
transformation is determined by requiring that the components of the transformation satisfy 
inhomogeneous Laplace or more general equations. The transformation is then used to 
transform the differential equation and the boundary conditions to the rectangular region. The 
boundary value problem in the rectangular region is integrated using one of the standard 
methods for general elliptic equations. The use of the existing software reduces the problem to 
analytically transforming the given differential equation and the Laplacian to general coor- 
dinate frame and then writing subroutines that will tabulate the coefficients of these differen- 
tial equations using the tabulated coordinate transformation. This method has been suc- 
cessfully used in two dimensions so we are concerned with the three dimensional extension of 
the existing codes where the major problem encountered is the volume of algebra and coding 
required to complete the method. To overcome these difficulties, a symbol manipulation 
program in VAXIMA is written that has as input the formula for the given differential 
equation in some natural coordinates and has as output the required FORTRAN subroutines. 
Because of the complexity of the resulting code, code validation was performed by systematic 
truncation error testing. The paper concludes with a discussion of the problems encountered 
in using a symbol manipulator to write large FORTRAN codes. 0 1985 Academic Press, Inc. 
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1. INTRODUCTION 

The last decade has seen a virtual explosion in the use of boundary fitted, 
generally non-orthogonal, coordinate systems for solving partial differential 
equations in complex geometries using finite difference methods. The wide range of 
physical problems treated include fluid dynamics, heat transfer, electric fields, and 
structures [2,9, 15,221. The “modern era” of grid generation can be dated from the 
1974 paper by Thompson, Thames and Mastin [21]. The automatic generation of 
such boundary fitted coordinate systems has become a significant research area in 
its own right, as evidenced by conferences and publications devoted entirely to this 
subject, e.g. [2,9,22]. The advantages and importance of this approach have been 
thoroughly discussed in, e.g. [2,9,22]. 

We begin this paper by presenting the analytic ideas behind a method for 
numerically integrating boundary value problems for elliptic partial differential 
equations in connected n-dimensional regions. We are mostly interested in 3-dimen- 
sional regions; however, we present the n-dimensional case because it requires 
essentially no extra effort. The analytic formulation that we present is then used to 
write a symbol manipulation program that uses, as input, the given differential 
equation and produces, as output, complete FORTRAN subroutines. These sub- 
routines are combined with standard software to produce a program that is now 
being used to study certain laser and fluid dynamics problems. 

One important aspect of these methods is that they are specifically designed to 
efficiently handle irregular regions, e.g., Fig. 1; in fact, the region is not required to 
be simply connected. 

We will be interested in general elliptic problems. In the linear case we set 
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where 

a, = a&h 1 <i, j<n, 

b, = b,(x), 1 <i<n, 

c = c(x), d= d(x), 

x = (XI) x2 )...) x,). 

(1.2) 

Given a,,, b,, c, d and appropriate boundary conditions, the problem that interests 
us is to determine a numerical approximation to f=f(x) which is to be a solution 
of 

Lf =o. (1.3) 

Here, all functions and the boundary of the region are assumed to be smooth 
enough to guarantee that the boundary value problem, the differential equation 
with the boundary conditions, has a smooth solution. To study nonlinear problems 
we allow the coeffkients of the differential equation to depend on f or the 
derivatives off: We will discuss the linear case and note the changes necessary to 
study nonlinear problems. 

The general idea of the approach that is considered in this paper is to transform 
the given problem into a problem that is easier to handle numerically. Because 
there is a substantial advantage to using finite difference methods on rectangular 
regions, the given region will be transformed to a rectangular region. The transfor- 
mation will be written 5 = k(x), and we will refer to the x coordinates as physical 
space and the 5 coordinates as the transformed space (see Fig. 2). Because of the 
complexity of the regions that interest us, it will be impossible to determine for- 
mulas for the transformation. However, such a coordinate transformation can be 
determined numerically by using one of several standard methods [&6, 12,21,22]. 

Once the coordinate transformation is found, it is necessary to transform the 
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given boundary value problem to the new coordinates. Because no analytic formula 
for the transformation is found, it is necessary to transform the given differential 
equation into a general coordinate frame. Centered differences are used to convert 
the differential equation in the transformed space to finite difference form. The coef- 
ficients of the finite difference equation are called the stencil of the difference 
equation. We use an iterative hopscotch SOR algorithm to solve the difference 
equations [16]. The SOR program requires, as input, the arrays that tabulate the 
stencil of the finite difference equations. Thus, one of the subroutines that the sym- 
bol manipulation program writes does the tabulation of the stencil when it is given 
a tabulation of the coordinate transformation. Currently, we are using only 
Dirichlet boundary conditions, which are hand coded. 

The method that we use to determine the coordinate transformation requires 
each component of the transformation to be the solution of an inhomogeneous 
Laplace equation in physical space [lo]. The requirement that the boundary of the 
given region is mapped to the boundary of the rectangular region provides the 
boundary conditions for the Laplace equations. Experience shows that this for- 
mulation has the advantage of producing good transformations over a wide range 
of problems but has the disadvantage of being formulated in physical space. To 
take advantage of the rectangular region, the Laplacian must be transformed to the 
rectangular region using the transformation that is yet to be determined. This 
results in a set of coupled nonlinear elliptic equations that must be solved for the 
transformation. Again, centered differences are used to reduce the differential 
equations to finite difference form and the resulting finite difference equations are 
solved by using an iterative hopscotch SOR procedure [16]. As before, the SOR 
solver requires, as input, a stencil that tabulates the coefficients of the difference 
scheme. Thus, the symbol manipulation program produces another subroutine that 
tabulates the stencil that is used in determining the coordinate transformation. 

In this paper we will focus our attention on the problems of transforming the 
given differential equation and the Laplacian to a general coordinate frame, con- 
verting the resulting differential equations to finite difference form, and then using 
the resulting formulas to write symbol manipulation programs that will produce the 
required FORTRAN subroutines. We also describe a procedure for validating the 
resulting code. 

In Section 2, we set up our notation and review some properties of transfor- 
mations. In the applications which we have in mind it is inappropriate to assume 
that the coordinate transformation preserves volume (has constant Jacobian) or 
that the transformation is orthogonal. We begin by reviewing some standard for- 
mulas for transforming derivatives and then compute the coefficients of the given 
differential equation in the new coordinate frame in a form convenient for symbol 
manipulation. Here, we use the formulas for the derivative of the inverse of a matrix 
function to greatly simplify our results. Instead of assuming that the components of 
the coordinate transformation satisfy Laplace’s equation, we assume they satisfy a 
general elliptic equation, calculate the form of this equation in the new frame, and 
then reduce these formulas to the case we need. It is hoped that the general for- 
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mulas will be of use in some problems that we are considering. We also discuss the 
transformation of derivatives of parameters that may appear in the coefficients. 

In Section 3 we use centered differences to reduce a general elliptic differential 
equation to finite difference form. Again, we do a bit of algebra to put the formulas 
for the stencil in a form convenient for symbol manipulation. We also observe that 
the stencil contains many symmetries, and we use this information to simplify the 
formulas. 

In Section 4 we list and discuss the symbol manipulation program used to write 
the subroutines. Currently, the symbol manipulation program is restricted to 2 or 3 
dimensions but could be easily extended to higher dimensions if we had 
applications for the extension. The subroutine that computes the stencil for the 
given differential equation is called SETM2 or SETM3 (depending on the dimen- 
sion) while the subroutine that calculates the stencil for determining the coordinate 
transformation is called SETGM2 or SETGM3. The acronyms are for “set matrix 
dimension” and “set grid matrix dimension.” 

We use the symbol manipulation program VAXIMA that is running on a VAX 
11/780 computer. This program is a VAX version of the symbol manipulation 
program MACSYMA [ 121. The choice of this symbol manipulator was dictated by 
the experience of the first author. However, we believe that our programs could be 
implemented in most general purpose symbol manipulators. It is important to note 
that our analytic formulation eliminates the need for the symbol manipulation 
program to know the multivariate form of the chain rule. It is also important to 
note that the completion of this project in a reasonable time while using reasonable 
effort was greatly facilitated by the large number of procedures available in 
VAXIMA. References [ 1, 7, 11, 14,231 describe some work related to our work. 

In Section 5 we give a listing of SETM3 and discuss some of the advantages and 
disadvantages of machine written code. In Section 6 we describe the testing 
procedure that was used to validate the complete solver. 

We began this project with a substantially different approach than the final ver- 
sion. In Section 7 we describe the old approach, which was successful, and discuss 
why the new approach is better. We do not consider that this project is complete. 
However, this report represents what we believe is significant and useful progress, 
and we hope that others will find the techniques described herein useful. We also 
describe some of the additional work that needs to be done. 

In this paper we will concentrate on symbol manipulation problems and will refer 
the reader to the literature for discussions of numerical problems. 

2. COORDINATE TRANSFORMATIONS 

In this section we review some standard material on coordinate transformations 
and derive some formulas appropriate for our symbol manipulation programs. In 
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what follows we will freely change between abstract vector and matrix notation, 
and component notation. Thus, if x is a vector, then we write 

x = (Xi) = (x1, x*,..., x,) 

and if M is a matrix, then we write M= (M,). We think of x as a column vector 
and j as the row index of the matrix and then 

(2-l) 

We also assume that, unless otherwise noted, all sums run from 1 to n. We proceed 
by assuming that we are given a problem in the physical variables x and that we 
will transform the problem to the transformed variables 5. The physical variables 
may be Cartesian, spherical, cylindrical or other coordinates. In our applications we 
will be doing numerical calculations in the transformed space so we will want to 
write all of our formulas in terms of the 5 variables. Thus we write 

x=x(S), 

and choose the Jacobian matrix J to be 

ax, ax, 
ay, ay, ... 

ax, 
2.g ... 
. . . . . . 

and K to be the cofactor matrix of J. Thus if A = determinant (J), then 

J-’ =f. 

The chain rule gives 

and multiplying by K/A gives 

(2.2) 

(2.3) 

(2.6) 
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The formula for 8/8x, can be used to compute the second derivatives, 

a 
ay,’ (2.7) 

If 8 is any derivative, then the rule for differentiating the inverse of a matrix, 
aA-‘= -A-Iah-1, gives 

and thus 

Recall that the original differential equation has the form 

In the new coordinates the equation will become 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Here a,, b,, c, d and f depend on x while ii,, a,, c”, a and 3 depend on 5. We also 
assume that ai, = 0 and Li, = 0 for i <j. Substituting (2.6) and (2.9) into (2.10) and 
comparing to (2.11) gives (6, is the Kronecker delta) 

c”= c, f&d. 

The formula for 6 can be simplified using the formula for ii, 

gi = - f 1 ii,,K,, 
I”” 

$ Jm+iCbJKji* ” J 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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To help with the symbol manipulation we set up (recall that J,,=c?x,/c?<,) 

Sg= 1 arsKriKj, 1 <i, j<n, (2.16) 
rs 

a*x 
Ui= 1 SnrKui u 

IU” at, at,’ 
l<i<n, (2.17) 

T,=c bjKji, l<i<n. (2.18) 

Note that S, = Sji. These definitions give 

ir,=-$ (2-6,) s,, l<i<j<n, (2.19) 

&= -$ Ui+f Ti, l<i<n, 

z = c, a=d. (2.21) 

This completes the calculation of the transformed equation. Note that in nonlinear 
problems, where the coefficients of L depend on f, the same formulas apply. 

We now turn to the problem of computing the coordinate transformation. The 
method that we use for this computation starts by assuming that 

t=m) (2.22) 

and that the components of 5 satisfy some elliptic equation in the x variables, 

L<k = Pk, l<k<n, (2.23) 

where Pk is given and, as before, L will have the form 

Here au, bi, c and P, may depend on x and 5. We start with a general equation so 
that we will have the formulas available for studying hyperbolic grids. Soon we will 
restrict L to be the Laplacian. The requirement that the boundary of the physical 
region be mapped one to one and onto the boundary of the transformed region 
generates boundary conditions that, along with the differential equations (2.23), 
determine the mapping 5 = g(x). 

The differential equation for the 5, can be transformed to the 5 frame using the, 
as of yet, undetermined transformation. Because the transformation has not yet 
been determined, the resulting transformed equations will be nonlinear. From (2.6) 
we have 

ac;, Kik -=- 
axi A (2.25) 
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and from (2.9) we have 

a2tk 
- = - -$ 1 KirK,uKuk &* 
axi axI ruu 

(2.26) 

To transform the differential equations for tk to a differential equation for xk we 
apply (2.25) and (2.26) with the definition 

to Eq. (2.23) to obtain 

Now multiply the eqUatiOnS ,?tk = Pk by J t0 obtain 

+b,+c c Jk,tlk=c Jk,Pk> ldi<n. 

In our applications we choose c = b, = 0 and thus have to solve 

C ar:,, 
111 

-&+A’~ Jk,Pk=o, 
r ” k 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

1 < n, for the functions x(r). 
In our applications we assume that the operator L is a Laplacian and this sim- 

plifies the formulas even further. Thus if J is replaced by its definition, then 

a ru = 0, 1624<rbtZ, (2.32) 

c 4”(2 - 6,“) 1 <i<n. (2.33) 
I” 

Remark. The a,, and A depend on the first derivatives of x(g) so that the above 
equations are quasi-linear and coupled. Also note that if the transformation is 
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orthogonal in the inner product determined by the matrix (Q), then the matrix (aii) 
is the identity and then the equations become uncoupled Laplacians. 

Another situation that arises frequently is that the derivatives of some parameters 
will appear in the coefficients of the differential equation. In particular, if the 
original equation is in divergence form, say 

then we rewrite the equation as 

Now our previous formulas can be used to change the derivatives of rrij to the new 
coordinates. The case that we have used is where crYis a scaler multiple of the iden- 
tity matrix, that is, the equation under consideration is 

(2.36) 

3. DIFFERENCE EQUATIONS 

After the coordinate transformation has been made, the resulting differential 
equation must be converted to finite difference form. Here we replace 7 by g. In our 
application we are using the simplest centered differences. Thus we convert 
derivatives to differences using 

(3.1) 

and so forth. The mixed partial derivatives are obtained by combining the first dif- 
ferences. All of the formulas that we use are given in the function “difference” in the 
VAXIMA listing in Section 4. This procedure will convert the differential equation 
to difference equation of the form 
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c Cij,k(Sl~e,~~3,gcrl+~~rl~tl,+i~r*,~3+~~r3,=~crl~~*,r3,. 
lil + Lil + lkl < 3 

(3.3) 

Here i, j, k each run over the set of values { - 1, 0, 1 }. The coefficients cij,k are 
called a stencil. For convenience, we view the elements of the stencil as points on 
cube on three space and then label the elements as in Fig. 3. Thus 

cl = c - l,l,O, c2 = CO,l.OI c3 = Cl,l,O, 

c4 = c - 1.0.0 9 c5 = co,o,o 7 ~6 = c1.0.0, 

c7=c-l,-1.0, ~8 = co, - l,o> c9 = Cl, - l,O, 

while the cf and cb elements are equal to some c coefficient with the same first two 
subscripts, as indicated in the above formulas, and the third subscript is + 1 for cf 
and - 1 for cb. 

Because of the simplicity of the finite differences used to represent derivatives, the 
stencil has several symmetries. First note that the stencil contains 27 elements. We 
use the value of li( + 1 j( + Ikl to distinguish four cases. Again, we view this stencil 
as points on a cube in three space, and note that 8 corner elements have value zero, 

Ii1 + ljl + Ikl =3=>ci,j,k=O. (3.4) 

cbl 
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cb2 cb3 
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Next, the 12 elements at the center of an edge have an odd symmetry: 

c- ij,k = ( - 1 Ji Ci,j,k 

I4 + IA + IN =2* ci,-j,k=(-lyCij,k. 
ci,j,-k=(-l)k Cij,k 

The 6 elements at a center of a face are a sum of two terms, 

Ci,j,k = ai,j,k •t bi,j,k 3 

when ayk and bi,j,k have, respectively, even and odd symmetries: 

(3.5) 

(3.6) 

I 

a - ij,k = aij,k 

I4 + I jl + lkl = 1 * a, -j,k = aij,k (3.7) 
ai,j, ~ k = aij,k 

b - i,j,k = ( - 1 )i bij,k 

Ii1 +ljl + Ikl=l* b,-,k=(-ly b,,,k. 
bi, ~ k = ( - 1 Jk b,j,k (3.8) 

Of course there is the one remaining center element where Ii1 + 1 jl + Ikl = 0 which 
is the sum of three terms. 

These symmetries reduce the computation of the 27 stencil elements to the com- 
putation of 10 stencil elements grouped as follows: 

Case Number 

[iI + ljl + Ikl = 3 0 
/iI + (jl + Ikl = 2 3 
/iI + I jl + Ikl = 1 6 
jil + I jl + Ikl =0 1 

Using the non-subscripted notation we have identities 

cfl=cf3=cf7=cf9=0, 

cbl = cb2 = cb7 = cb9 = 0, 

cl = -c3= -c7=c9, 

cf 2 = -cb2 = -cf 8 = cb8, 

cf4= -cb4= -cf6=cf6. (3.9) 
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If we set hi = Ati, then the elements’of the stencil are given by sums of multiples of 
coefftcients of various derivatives in the differential equation as indicated in the 
following table. 

Stencil Factor Derivative Factor Derivative 

Cl 

d-2 

cb4 

c4 

c6 

c2 

c8 

cf5 

cb6 

C5 

-2 

4h,h2 

2 

%h3 

2 

%h3 

1 
hz 1 

1 
P 1 

1 

P 2 

1 
72 2 

1 
s;T 3 

1 
7;? 3 

-2 
hZ 

8% 
at, at2 
a2g 

x2 at, 
a2g 

at, x3 
a% 
z 
a2g 
z 
a2g 
ar5 
8% 
ar: 
8% 
ar: 
828 
@ 

-1 
2hl 

1 
F 

-1 
z 

-1 
z 

1 

h3 

-1 

h, 

1 

ag 
ay, 
ag 
a51 
ag 
arz 
ag 
atz 
ag 
ay, 
ag 
a53 
g 

Ideas similar to the above apply to the calculation of the coordinate transfor- 
mation. The differential equation under consideration is then 

(3.10) 

Using the previous table we can now easily write down the formulas for the stencil 
defining this differential equation. This last formula is given in the last section of 
Mastin and Thompson [13]. 
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4. THE SYMBOL CODE 

A partial listing of the VAXIMA code used to write the subroutines SETM3 and 
SETGM3 is given at the end of this section. A partial listing of the subroutine 
SETM3 is given in the next section. We have not provided the full listings (at the 
suggestions of the editors) of the symbol and FORTRAN code because these listing 
are lengthy and redundant. We will provide complete listings with the reprints. 
Every effort was made to keep the symbol code straightforward. In particular, the 
computation of SETM3 and SETGM3 were kept uncoupled (and consequently 
redundant) to facilitate the use of the symbol code for new problems. 

Because the VAXIMA code closely follows the mathematical development of the 
previous section, we hope that the reader may follow the program using the MAC- 
SYMA manual [ 123. As we indicate in the comments in the symbol program, the 
problem is broken up into several pieces represented by VAXIMA function calls. 
Each function accumulates, in lists, some of the formulas needed to write the FOR- 
TRAN code. At the end these lists are processed to produce the subroutines. 

Before we turn to the listing we would like to mention a few points. To avoid 
conflicts between indices in the VAXIMA code and the FORTRAN code we have 
used double characters, nn, ii, jj,..., for integer variables in VAXIMA and reserved 
single characters, n, i, j,..., for use in the FORTRAN code. In many places where 
one would expect array elements, say a( 1 ), one finds instead function call of the 
form 

concat(a, 1). (4.1) 

This call produces an atomic variable of the form al rather than the array reference 
a( 1). This allows us to substantially reduce the number of array references than 
might otherwise appear in the FORTRAN code. 

Although we are mainly interested in the three dimensional case, the VAXIMA 
program does both the two and three dimensional case. This greatly facilitated 
checking the VAXIMA programs because the two dimensional case can be done by 
hand. 

The original VAXIMA code was quite different from the version given here. The 
approach of the first version was to implement the chain rule and then let the chain 
rule do its work. This produced large expressions that were difficult to handle in 
VAXIMA. A more detailed description of the problems encountered using this 
technique is given in Section 7 of this paper. 

4.1. VAXZMA Listings 

The following comments occur at the beginning of the VAXIMA listings. 
These programs start with a differential equation, transform the differential 

equation to general coordinates, introduce finite differences and notation 
appropriate for FORTRAN and then write two FORTRAN subroutines called 
SETM2 and SETGM2 or two subroutines called SETM3 and SETGM3. These 
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subroutines can be used with elliptic equation solvers and coordinate generating 
codes to solve elliptic boundary value problems in irregular regions. 

The functions in this file are called: 

special( ) special 2 or 3 dimensional case 

general( ) general 2 or 3 dimensional case 

change( ) change variables 

notate() atomic notation for derivatives 

notation(exp,vari) primitive atomic notation 

scheme( ) introduce differences of unknown 

difference(u,f,exp) primitive differences 

myFORTRAN( ) write the FORTRAN code 

The functions special and general are test drivers. The special test driver 
transforms a Laplacian with variable diffusivity given in rectangular coordinates in 
2 or 3 dimensions while the general test driver transforms a general elliptic equation 
in 2 or 3 dimensions. Both drivers return FORTRAN subroutines suitable for use 
with elliptic equation solvers. 

The program change converts an arbitrary second order differential equation in 
nn variables to an arbitrary coordinate frame in the variables xi[i]. This program 
also computes some formulas used to transform the Laplacian to the xi variables. 

The programs notate and notation introduce atomic variable notation for the 
derivatives of the coordinate change. 

The programs scheme and difference introduce the differences of the unknown 
functions and then collect the coefficients of these differences which are used to 
calculate the stencil used to drive the elliptic equation solver. These programs also 
calculate the stencil for the code that calculates the coordinate transformations. 

The program myFORTRAN takes the information computed by the other 
programs and writes the FORTRAN subroutines SETMN and SETGMN into files 
called SETA and SETGM3. It also writes a file called formulas that contains 
algebraic forms of all of the formulas used in the subroutines in a form convenient 
for human reading. 

Here are the variables used to store the information needed to write the FOR- 
TRAN subroutine SETM: 

real variables used by the subroutine 

differ difference equations 

inter Jacobian and other intermediate expressions 

stencil formulas for the stencil 

calling notation for the coefficients 
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In the VAXIMA code we use the variables: 

nn 

X,Y,Z 

ind 

xi[i] 
f 

g 

ew 

neweqn 

sigma 

s 

aij,bi,c,d 

dep 

the spatial dimension 

the independent variables 

a list of the independent variables 

the new independent variables 
the dependent variable 

the new dependent variable 

the differential equation 

the transformed differential equation 

the variable diffusivity 

sigma in the new variables 

coefficients in the differential equation 

list of dependent variables 

Now we turn to listing some of the VAXIMA functions. Variables with a name of 
the form name _ g are used to write SETGMN rather than SETMN. 

4.1.1. special 

special(n) : = block( 
/* The special 2 dimensional case of Laplacian with variable 

diffusivity. */ 
/* Declare some flags and variables. */ 

showtime:all, /* display computation times */ 
gcprint:false, /* don’t display garbage collections */ 
dep:[f,sigma], /* the dependent variables */ 
ind:[x,y,z], /* the dependent variables */ 
depends(dep,ind), /* declare the dependencies */ 

/* Here is the Laplacian with variables diffusivity sigma. */ 
eqn:sum(diff(sigma*diff(f,ind[i]),ind[i]),i,l,nn), 

/* Call the functions that write the subroutines. */ 
change( ), 
notate( ), 
scheme( ), 
myFORTRAN( ), 
end)$ 
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4.1.2. general 

This function has been omitted but is much like the previous function, 

4.1.3. change 

/* The next program changes a given differential equation to an */ 
/* arbitrary coordinate frame. The notation uj is used to denote */ 
/* values related to the Jacobian while the notation ok is used to */ 
/* denote values related to the inverse of the Jacobian. The arrays */ 
/* tt, aa, bb are used as temporary storage. */ 
change( ): = block( [new,templ,temp2jacmat,det], 

kill(labels), /* clear some memory */ 
/* Construct a list of the new variables. */ 

new: [ 1, /* initialize a list for the new independent variables */ 
for ii thru nn do new:endcons(xi[ii],new), 
depends(ind,new), /* declare the dependencies */ 

/* Define the Jacobian and related quantities. */ 
tt[ii,jj]:= diff(ind[ii],xiuj]), /* tt is a VAXIMA array */ 
jacmat:transpose(genmatrix(tt,nn,nn)), /* the Jacobian matrix */ 
remarray( /* save memory */ 
det:expand(determinant(jacmat)), /* the Jacobian */ 
inter:[vj = det], /* start a list of formulas for SETM */ 
inter _ g:inter, /* same for SETGM */ 
inter:endcons(vk = l/vj,inter), /* reciprocal of the Jacobian */ 
inter _ g:endcons(vj2 = vj-i,inter _ g), /* powers of above */ 
inter:endcons(vk2 = vk/vj,inter), 
inter:endcons(vk3 = vk2/vj,inter), 
real:[vj,vk,vk2,vk3], /* start a list of variables for SETM */ 
real _g:[vj,vj2], /* start a list of variables for SETGM */ 

/* Collect the coefficients of the given differential equation. */ 
neweqn:ev(eqn,diff,expand), /* put the PDE in expanded form */ 

/* Collect the coefficients of the second derivatives. */ 
for ii thru nn do for jj:ii thru nn do ( 

templ:bothcoeff(neweqn,diff(f,ind[ii],l,indCjj],l)), 
aa[ii,jj]:Iirst(templ), 
neweqn:last(templ), 
end 1, 

/* Collect the coefficients of the first derivatives. */ 
for ii thru nn do ( 

templ:bothcoeff(neweqn,diff(f,ind[ii])), 
bb[ii]:first(templ), 
neweqn:last(templ), 
end), 
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/* Transform the derivatives of the parameter sigma appearing in the */ 
/* coefftcients of the differential equation. This uses the formulas */ 
/* derived in the above mentioned paper. s is the name for sigma */ 
/* in the new variables. */ 

depends( s,new ), /* more dependencies */ 
for ii thru nn do for jj thru nn do 

bb[ii]:subst( 
sum( 
concat(vk,jj,kk)*diff(s,xi[kk]*vk 
,W,nn), 
diff(sigma,indCjj]),bb[ii]), 

for ii thru nn do for jj:ii thru nn do 
aa[ii,jj]:subst(s,sigma,aa[ii,jj]), 

/* Calculate the intermediate expressions that determine the transformed */ 
/* differential equation. For a derivation of these formulas see the */ 
/* above mentioned paper. Here we are simply recording those formulas. */ 
/* Compute the entries the cofactor matrix of the Jacobian. */ 

for ii thru nn do for jj thru nn do ( 
templ :concat( vk,ii,jj ), 
temp2:( - l)*(ii +jj)*determinant(minor(jacmat,jj,ii)), 
temp2:expand(temp2), 
if nn = 2 then (templ::temp2) else ( 
real:endcons(templ,real), 
real _ g:endcons( templ,real ~ g), 
inter:endcons(templ = temp2,inter), 
inter _ g:endcons(templ = temp2,inter _ g), 
end 1, 

end), 
/* Record the formula for S. */ 

for ii thru nn do for jj:ii thru nn do ( 
templ:concat(S,ii,jj), 
real:endcons(templ,real), 
temp2:sum(sum( 

aa[kk,ll]* 
concat(vk,kk,ii)* 
concat( vk,ll,jj ), 
Il,kk,nn),kk,l,nn), 

temp2:factorsum(temp2), 
inter:endcons(templ = temp2,inter), 
end), 
for ii thru nn do for jj:l thru ii - 1 do ( 

concat(S,ii,jj)::concat(S,jj,ii), 
end), 



SYMBOLIC MANIPULATION AND CFD 269 

/* Record the formulas for U. */ 
for ii thru nn do ( 

templ:concat(U,ii), 
real:endcons(templ,real), 
temp2:sum(sum(sum( 

concat(S,jj,kk)* 
concat(vk,ll,ii)* 
diff(ind[ll],xi~j],l,xi[kk],l) 
,jj,l,nn),kk,l,nn),ll,l,nn), 

inter:endcons(templ = temp2,inter), 
end 1, 

/* Record the formulas for T. */ 
for ii thru nn do ( 

templ:concat(T,ii), 
real:endcons(templ,real), 
temp2:sum(bb~j]*concat(vk,jj,ii),jj,l,nn), 
temp2:factorsum(temp2), 
inter:endcons(templ = temp2,inter), 

end), 
remarray(aa,bb), /* clear some memory */ 
inter:ev(inter), /* evaluate the temporary variables */ 

/* Record the formulas for SETGMN. */ 

/* Record the formulas for alpha. */ 
for ii thru nn do for jj:ii thru nn do ( 

templ:concat(alp,ii,jj), 
temp2:sum( 

concat(vk,kk,ii)*concat(vk,kk,jj) 
,W,nn), 

real ~ g:endcons(templ,real _ g), 
inter _ g:endcons(templ = temp2,inter _ g), 

end 1, 
for ii thru nn do for jj:l thru ii - 1 do ( 

concat(alp,ii,jj)::concat(alp,jj,ii), 
end), 
inter _ g:ev(inter _ g), 

/* Introduce the hosted differential equation in the new coordinates. */ 

depends(g,[xi[l],xi[2],xi[3]]), 
neweqn:subst(g,f,neweqn), 
neweqn:neweqn + 

sum(sum(concat(S,ii,ji)*diff(g,xi[ii],l,xiCij],l)*vk2, 
ii,jj,nn),ji, 1,nn) 
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+sum(( -concat(U,ii)*vk3 + concat(T,ii)*vk)*diff(g,xi[ii]), 
ii, l,nn), 

neweqn:ev(neweqn,expand), 
/* Introduce the differential equation that determines the coordinate */ 
/* transformation. */ 

neweqn _ g:sum(sum( 
concat(alp,ii,jj)*diff(g,xi[ii],l,xiLjj],l) 
,ii,l,nn),jj,l,nn) 
+vj2*sum(concat(vp,ii)*diff(g,xi[ii],ii,l,nn), 

neweqn ~ g:ev(neweqn ~ g,expand), 

end)$ 

4.1.4. notate 

This functions applies the next function to various lists. 

4.15 notation 
notation(exp,vari): = block( 
/* Make the substitution of atomic variables for derivatives. */ 

for ii thru nn do for jj thru nn do 
exp:subst(concat(vari,ii,jj),diff(vari,xi[ii],l,xiCii],l),exp), 
for ii thru nn do exp:subst(concat(vari,ii),diff(vari,xi[ii]),exp), 
ev)$ 

4.1.6. scheme 

/* The next program sets up the calculation of the derivatives of the */ 
/* coordinate change and any parameters in the coefficients of the */ 
/* differential equation using differences and records the formulas in */ 
/* the list difSer. */ 

scheme( ) : = block( [templ,temp2,temp3,args], 
/* Add the step sizes to the real lists */ 

for ii thru nn do real:endcons(concat(h,ii),real), 
for ii thru nn do real _ g:endcons(concat(h,ii),real ~ g), 

/* The array arguments depend on the dimension. */ 
if nn = 2 then args:“(i,j)” else args:“(i,j,k)“, 
templ:concat(s,args), 
differ:[sO = templ], 
differ ~ g: [ 1, 

/* Write the formulas for the derivatives of S. */ 
for ii thru nn do ( 

templ:concat(s,ii), 
temp2:difference(s,s,diff(s, xcii])), 
differ:endcons(templ = temp2,differ), 

end ), 
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/* Write the formulas for calculating p, the forcing terms. */ 
for ii thru nn do ( 

templ:concat(vp,ii), 
temp2:concat(p,ii,args), 
differ _ g:endcons(templ = temp2,differ _ g), 

end), 

/* Write the formulas for the first derivatives of the independent */ 
/* variables. */ 

for ii thru n do for kk thru nn do ( 
templ:concat(ind[kk],ii), 
temp2:difference(ind[kk],ind[kk],diff(ind[kk],xi[ii])), 
differ:endcons(templ = temp2,differ), 
differ _ g:endcons(templ = temp2,differ _ g), 

end), 

/* Write the formulas for the second derivatives of the independent */ 
/* variables. */ 

for ii thru nn do for jj thru ii do for kk thru nn do ( 
templ:concat(ind[kk],jj,ii), 
temp2:difference( 

ind[kk],ind[kk],diff(ind[kk],xi[ii],l,xilJ],l)), 
differ:endcons(templ = temp2,differ), 

end ), 

/* Introduce the formulas for calculating the stencil for SETMN. */ 
/* See the above mentioned paper for a derivation of the formulas. */ 

stencil: [ Icalling: [ 1, /* initialize the lists */ 

/* Now create the formulas. */ 
calling:endcons(“cl”,calling), , 
templ:concat(“cl”,args), 
temp2:-coeff(neweqn,diff(g,xi[l],l,xi[2],1))/2*hl*h2), 
stencil:endcons(templ = temp2,stencil), 

calling:endcons(“&“,calling), 
templ :concat(“c2”,args), 
temp2:coeff(neweqn,diff(g,xi[2],2))/(h2*2), 
temp3:coeff(neweqn,diff(g,xi[2],1))/(2*h2), 
stencil:endcons(templ = temp2 + temp3,stencil), 

calling:endcons(“c8”,calling), 
templ:concat(“cX”,args), 
stencil:endcons(templ = temp2 - temp3,stenciI), 

Now omit the calculation of the remaining stencil elements in SETNM and all of 
the stencil calculations in SETGMN. Finish up scheme. 
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/* Try to improve the form of the formulas in stencil ._ g. */ 
stencil _ g:factorsum(stencil ._ g), 
end )S 

4.1.7. difference 

This function substitutes standard difference formulas for derivatives and is con- 
sequently omitted. 

4.1.8. myFORTRAN 

This functions uses the previously computed formulas to write the FORTRAN 
subroutines. The steps in this function essentially parallel those that would be used 
by a human writing the same subroutine so we omit this function. The reader 
should refer to the fortrun function that is described in the MACSYMA manual. 

5. THE FORTRAN CODE 

Portions of the FORTRAN subroutine SETM3 written by VAXIMA are listed at 
the end of this section. As the reader will notice, the subroutine is a bit different 
from what a human would write. We would now like to explain these differences 
and discuss their advantages and disadvantages. 

One of the first things to notice is that there is considerable redundant arithmetic 
in the formulas that compute the stencil elements. We attempted to use the 
VAXIMA functions “optimize” and “factorsum” to improve the form of these 
expressions. Unfortunately, the expression for ul is left unchanged by each of these 
VAXIMA functions. It is certainly possible to write programs to reorganize the for- 
mulas in the FORTRAN subroutines for the particular case we studied here. This is 
also easily done with a text editor. We decided that a general solution of this 
problem is beyond the scope of the present paper but we hope to work on this 
problem in the near future. We note that it will be important to make the solution 
of this part of the problem compatible with the optimizers in various FORTRAN 
compilers. 

Also, we made no attempt to make the formulas in the FORTRAN code 
readable. Instead, as an independent part of the VAXIMA code, we write all of the 
formulas in VAXIMAs planar format that is designed for human reading. 

It is worth nothigg that, in our applications, the computations done by our sub- 
routines represent a small percentage of the total computations so that optimizing 
the operation count in the subroutines is not critical. It is also easy to set up a test 
case for the subroutines, use an editor to modify the subroutines and then compare 
the results to the original subroutine to guard against errors. Also, in some 
applications, it may be desirable to have some part of the code compute the arrays 
of derivatives of the coordinate functions and then pass these arrays to any parts of 
the program. Again, these are easy changes to make in the subroutines. 

If one looks at the mathematical formulation of the change of variables given in 
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Section 2, then it seems natural to introduce arrays to represent Ti, Ui and S,. In 
our programs such arrays are not introduced and instead atomic variables of the 
form 

T1, T2, T3, U1, U2, U3, Sll, S12 ,..., S33. 

are introduced. This represents a substantial savings in the run time of the program 
because of the elimination of the need to look up array elements. A similar 
procedure is used to represent the derivatives of the coordinate functions. 

Here is a listing of the FORTRAN subroutine written by our VAXIMA program. 

5.1. FORTRAN &ing for SETM3 

The header and comments will help in understanding the purpose of the sub- 
routine: 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE SETM3(IL,JL,KL,ILD,JLD,S,X,Y,Z,Hl,H2,H3,Cl,C2,C8,C4, 
C6 

1 ,C5,CF2,CB4,CF5,CB5) 

ILD,JLD,KLD ARE THE DIMENSIONS OF ARRAYS IN THE CALLING 
PROGRAM. 
IL,JL,KL GIVE THE SIZE OF THE PROBLEM. 
S IS THE INPUT ARRAY OF DENSITIES. 
Hl,H2,H3 ARE INPUT DIFFERENCES. 
X,Y,Z ARE THE INPUT ARRAYS OF COORDINATES. 

Cl,C2 ,..., CFl,CF2 ,..., CBl,CB2 REFER TO THE ELEMENTS OF THE 
STENCIL THAT ARE RETURNED BY THIS SUBROUTINE. THESE 
ELEMENTS SATISFY CERTAIN IDENTITIES SO THAT WE ONLY 
COMPUTE A SUBSET CONSISTING OF 10 OF THE ELEMENTS. THE 
FORMULAS FOR THE REMAINING ELEMENTS ARE: 

CFl=CF3=CF7=CF9=0 
CBl=CB2=CB7=CB9=0 
Cl = -c3 = -CF8 = CB8 
CF4 = -CB4 = -CF6 = CB6 

The variable declarations, loop counters, and some preliminary computations are 
now omitted. Here are some of the finite difference computations: 

X3 = (X(I,J,K+ 1)-X(I,J,K- l))/H3/2.0 
Y3 = (Y(I,J,K+ 1)-Y(I,J,K- l))/H3/2.0 
23 = (Z(I,J,K+ 1)-Z(I,J,K- l))/H3/2.0 
X11 = (X(1+ l,J,K)-2*X(I,J,K)+X(I- l,J,K))/H1**2 
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X12=(X(I+l,J+1,K)-X(I+1,J-1,K)-X(I-l,J+1,K)+ 
X(1- l,J- l,K))/(Hl *H 

1 2)/4.0 

Now skip to the evaluation of the Jacobian and its minors: 

VJ=Xl*Y2*Z3-X2*Yf*Z3-Xl*Y3*Z2+X3*Yl*Z2+X2*Y3*Zl- 
X3*Y2*Zl 

VK = l/VJ 
VK2 = VK/VJ 
VK3 = VK2/VJ 
VKll =Y2*Z3-Y3*Z2 
VK12 = Y3*Zl -Yl*Z3 

Now skip to some of the calculations of some of intermediate quantities: 

Now skip some of the intermediate calculations and go to a point just before the 
arrays for the stencils are calculated: 

T3 = VK*(S3*VK33**2 + S2*VK33 + Sl*VK31*VK33 + S3*VK23**2 + S2* 
VK22* 

Cl(I,J,K) = -S12*VK2/(Hl*H2)/2.0 
C2(I,J,K) = -(H2*U2*VK3 -2*S22*VK2 - H2*T2*VK)/H2**2/2.0 

The final part of the code fills the remaining stencil elements and then closes the 
loops. 

6. NUMERICAL VALIDATION 

The potential for errors in either the problem formulation or the encoding 
procedure always exists in complex codes such as three dimensional boundary fitted 
coordinate codes. The need for validation was emphasized in the present work 
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because symbolic manipulation was used; the resulting “psychological distance” 
from the work made it less likely to be satisfied with superficial plausibility exercises 
based on intuitive ideas of acceptable levels of absolute error. 

In the present work, we validate the codes by performing numerical tests. The 
approach is to choose a continuum solution for the class of problems treated by the 
code, and to validate the convergence of the results to this continuum solution by 
systematic truncation error convergence testing over a sequence of grid sizes. This 
procedure, though well known in theory, is seldom followed in practice. 

6.1. Hosted Equation Convergence Testing 

To test the equation L(F) = Q, we test a modified equation whose solution is 
chosen to be 

Fs= (x ~+‘x~+2x~+3)/Fn on R, 

where 
m=nl+na-1 

and nl= degree of L (e.g., nl = 2 for L = Laplacian) and na = order of accuracy of 
the finite-difference expression (e.g., na = 2 for centered differences). Fn is the nor- 
malizing value of Fs. The motivation in the selected form of the solution is of course 
to insure that all the derivative terms in L are exercised, and that there is non-zero 
truncation error for finite hi, even without the transformation of coordinates. (For 
example, a parabolic solution will show no truncation error using second-order 
accurate solutions with the identity transformation. -Several published “validations” 
of the accuracy of upwind differencing are inadequate because the chosen solution 
structure does not exercise the meaningful terms in the truncation error, giving a 
false indication of accuracy.) 

The modified problem to be tested is then 

L(F) = Qs on R, 
where 

Qs = Q + L(Fs). 

The boundary equations for the modified problem are 

F=Fs on boundary of R. 

Qs can be obtained in x by elementary operations as 

Qs = Q + Fs[m(m + 1)/x: + (m + l)(m + 2)/x: + (m + 2)(m + 3)/x:]. 

The solution is obtained in a stretched coordinate system 5 = (<r, rZ, r3), where 
the ri values are linear from 0 to 1, t1 = hl*(i- l), etc. The chosen coordinate 
transformation is given by 

xi=5s+5i+tanh(dirl525,), 
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ts is a shift, necessary to avoid a singularity in the chosen solution at the origin. 
The parameters di control the severity of the coordinate stretching; for di = 0, there 
is no stretch in xi direction. The form of the coordinate transformation is chosen to 
exercise all terms in the transformed equations, notably the cross-derivative terms, 
which would be zero if the coordinate transformations were independent in each 
direction. For non-zero d,, the tanh term in the transformation assures non-zero 
values for all derivatives. 

The above solution and transformation appear to generate non-trivial (non-zero 
and non-repeating or canceling) derivatives of all orders, including cross- 
derivatives. 

The discrete solution Fd is then obtained on a family of grids, using any standard 
method. (We used the spatial marching methods in the GEM codes [ 16-201 for 
20, and hopscotch SOR in 30.) It is important that iterative convergence criteria 
be stringent, so as not to confuse the incomplete iteration (residual) error with the 
truncation error te = Fs - Fd. We required iterative convergence to essentially the 
single precision accuracy of the 32-bit VAX computer used, about 7-8 decimal 
figures. We also forced a minimum number of iterations to be performed, somewhat 
greater than the maximum grid index, to be sure that a false indicator of iterative 
convergence was not obtained due to good initial conditions available at the line 
grid spacing. 

The truncation error convergence is then monitored as the grid is systematically 
relined. Theoretically, the local values of p = te/h2 should become constant as the 
grid size is relined. For a uniformly na-th order finite difference discretization 
(“uniformly” implying at all points for all derivatives) the truncation error can be 
written as 

te=Cl h1”“+C2h2”“+C3h3”“+h.o.t. 

We define the index of predicted order of truncation error 

p = N”“. 

With h 1 = c ,,,,JN = l/N, etc. we have 

p = Cl t;“,,, + C2<;“,,, + C3(;“,,, + h.o.t., 

which is constant to order na approximation. 
We then monitor p as N increases, using p at specified points (e.g., per at the cen- 

ter of the grid) and pmx = maxi,, p. If all p = constant as N increases, we have 
verified (1) the equation transformation, (2) the order of finite difference 
expressions, and (incidentally)( 3) the solution procedure. 

This procedure does not require a grid halving sequence, N = 2”, although this 
sequence does make the judgment easier. Also, we note from experience, even on 
trivial 1D problems, that p = “constant” really means as much as a 50% variation 
as the grid is halved. (The results presented herein are much more convincing, as 
will be seen.) 
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For a coarse-mesh solution, it would be advantageous to eliminate the iterative 
residual from the calculation of te by using a direct method, i.e., Guassian 
elimination. However, in 3D this will fail for large N by round-off error and/or 
CPU time demands; likewise for the marching methods. Iterative methods are 
dangerous in that their convergence depends on L, and on the coordinate transfor- 
mation. Note, however, that it is not necessary, nor even advisable, to test the 
small-parameter (high Reynolds number) problem. Errors will show up more 
readily when all coefficients in L are of the same order. Once the above procedure 
has verified the algebra and coding accuracy, one can proceed with alternate 
solutions techniques for the small-parameter problem. 

Note that this procedure can be followed for mixed-order finite difference 
equations (e.g., upwind differencing on first derivative terms) with the modification 
that we look only for convergence in the sense of zero error as N increases, to verify 
the coding algebra and coding accuracy. This modified procedure will not verify the 
order of accuracy of the mixed-order equations, and will probably require even 
liner grid solutions for first-order equations since the convergence of these is dif- 
ficult to judge. 

6.2. 30 Hosted Equation Convergence Results 

Table I presents the results of testing for the constant-coefficient Laplacian 
equation in 3D, using moderate stretching parameters di = 0.1. The mesh size was 
successively halved three times, from 53 to 333. The numerically calculated Jacobian 
for the 53 grid ranged from 1.0187 to 1.1684, and for the 333 grid ranged from 
1.0003 to 1.2792. The table presents the maximum truncation error over the grid, 
temax, and the grid location at which it occurred; the truncation error at the center 
of the grid, tectr; and the corresponding values pmx = temax/h2 and per = tectr/h2. 

The near-constancy of the coefficient pmx = temax/h2 indicates that the entire 
solution, including the coordinate transformation and the finite difference 
expressions, is second order accurate. The erratic behavior of per at the finest grid 
indicates round-off error problems. 

Table II presents results of testing for the variable-coefficient Laplacian equation 
in 3D, using both moderate stretching d, = 0.1 and strong stretching di = 10. The 
hosted equation solved is 

Vo.VF=O, 

u = u. + urn sin(b), 

b = xyx;x;, 

X h = (X1 - Xlmin)/(Xlmax -Xlmin)3 etc. 

The code, of necessity, used the expanded (non-conservation form), 

oV2F+Va,VF=0. 
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TABLE I 

3D Hosted Equation Convergence Testing for V2F= 0. 
The Stretching Parameters d, = 0.1 

grid temax 
5’ .402e - 03 
93 .172e-03 

173 .492e - 04 
333 .134e-04 

at 
4,434 
8,c3 

15,15,15 
29,29,29 

tectr 
.832e-05 
.6x% -06 
.34Oe-07 

-.169e-06 

pmx 
.646e-02 
.llle-01 
.126e-01 
.137e-01 

per 
.133e-03 
.416e-04 
.87Oe-05 

-.173e-03 

(We have not yet developed symbolic manipulation codes with the ability to retain 
the unexpanded or conservation form of the equation.) The solution chosen was 

Fs=x;~+~x~+~x;~+~ Fn I 
giving the forcing term 

ax = CT,,, cos(b) x;x;/bd, 

ay = cm cos(b) xyx;/bd, 

CJ, = am cos(b) xlxybd, 

bd= (Xlmax - Xlmin)(X~max -X2min)(X3max -X3min). 

Only the values of pmx are shown in Table II. The results show that the 
validation occurs even at the grid 173 for moderate stretching with dj = 0.1, but that 
there is some variation in pmx even at the grid 333 for strong stretching with 
di = 10. The convergence is clear, however. 

The behavior of the truncation error for the strong stretching is of interest. The 
values of temax for just the coarse grid are plotted in Table III for a range of 
stretching parameters di. 

For this coarse grid, di = 0.1 minimizes the maximum truncation error. The table 
shows that large and inappropriate stretching values do indeed increase the trun- 
cation error by almost two orders of magnitude compared to the best transfor- 
mation used. However, Table II shows that the results are still 0(/z*) accurate. By 

TABLE II 

3D Hosted Equation Convergence Testing for V. uVF= 0 

d,=OO.l, 
d, = 10.0, 

grid = 
pmx = 

pmx = 

5’ 93 
.39Oe -02 .877e -02 
,433 .691 

173 333 
l.ooe-02 
1.21 1.53 
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TABLE III 

3 Hosted Equation Convergence Testing for V. uVF= 0 
in the Coarse Grid = 53 

d, = 
lemax = 

0. 
.830e-03 

0.1 
.244e-03 

0.5 
.489e-02 

1.0 
.13le-02 

10.0 
.271e-01 

definition, we mean that the method is second order accurate if a reduction in h by 
a factor of l/2 will (asymptotically) reduce the truncation error by a factor of l/4. 

We also validated this retention of second-order accuracy for very strong Id 
coordinate stretching. Using double precision calculations, we experimented with a 
range of stretching parameters for reasonable coordinate transformations based on 
hyperbolic tangent and exponential functions, and even unreasonable transfor- 
mations based on exponentials of exponentials. In the extreme case, we used a 
transformation of 

where 
x=<+(exp(dl *(f(xi)- l))-exp(-dl))/(l -exp(dl)), 

f(xi)=(exp(dl * (xi-l))-exp(-dl))/(l-exp(-dl)) 

with dl ranging from 0 to 100. For dl = 10, pmx= temax/n**2 reaches its 
asymptotic value of 225 to two significant figures at n = 257. For dl = 100, the trun- 
cation error is 6 orders of magnitude higher than the no transformation case; 
nevertheless, pmx is constant to at least the first figure at n = 8193 and 16385. 

These results are at variance with analyses which focus on the coefficients of the 
Taylor series terms in the original (“physical”) independent variables. The present 
results also validate the claim in [16], that an analytical transformation of the 
equations does not change the order of the accuracy. If the coefficients of the 
transformation are also evaluated to O(h2) accuracy, as well as the hosted equation, 
then the overall results will be 0(/z*) accurate. 

6.3. 30 Grid Generation Results 

A similar procedure is followed to validate the grid generation codes. As 
described earlier, the grid generation method involves solving a set of three elliptic 
equations for the new coordinates k(x), written in the original (“physical”) coor- 
dinates as 

where L is the Laplacian operator in x, and the Pi may be chosen to give some con- 
trol of grid position in the interior. Since the system is transformed to 4 space, 
resulting in a set of three coupled nonlinear (quasilinear) equations, the validation 
procedure is more complicated. We chose the “solution” to be the transformation 

5 = xi + tanh(d,x,x,x,) 
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(which is the observe of the transformation used for the hosted equation testing 
above). Since the ti are known at each grid point, being selected as just linear 
variables in the grid indexes, the above equation must be solved for the inverse 
values of x,, x2, xg at each grid point. This nonlinear 3 x 3 system is solved by 
coupled 3 x 3 Newton-Raphson iteration at each grid point to establish the con- 
tinuum grid solution. Again, tight convergence criteria were used, assuring accuracy 
to essentially the single precision of the machine. 

The Pi necessary to produce this transformation are then obtained by operating 
on the solution r with the Laplacian L, giving 

Pi= -2&[x# + x:) + x:x:] sech(dix,x,x,)2 tanh(d,x,x,x,)]. 

The numerical solution is obtained using hopscotch SOR to solve linearized 
equations sequentially for xi, x2, and x3, followed by Picard outer iterations to 
update the linearized coefficients. A relaxation factor of l/2 was used in the outer 
(nonlinear) iterations, and loose iterative convergence criteria (actually, a limit on 
maximum number of inner iterations) were used in the early nonlinear stages. 
Again, overall iterative convergence was tight, essentially to the single precision of 
the machine, to clarify the truncation error behavior. *The.cost of solving the non- 
linear 3 x 3 system for the grid test was more expensive thzn solving the scalar 
linear equation for the hosted equation test, but &as still reasonably obtained 
because the exact continuum solution was available for use as initial conditions. 

The result for an early test in two grids is given in Table IV, for strong stretching 
values d, = 3. The values of temax seem small, and in fact decreased by almost a fac- 
tor of 2 with the mesh size halving. This test could likely pass for a validation. The 
test was actually inconclusive and, in fact, the test driver code was in error. 

The false result is included here to emphasize that systematic convergence testing 
over a sequence of grids is required for validation. The error was in fact discovered 
with such systematic testing, the results of which are shown in Table V, for both the 
original and corrected test drivers. 

The complete, systematic convergence test clearly indicate a persistent error in 
the original test, and clearly indicate second-order convergence in the corrected test. 

6.4. Discussion of Validation Procedure 

We note that the validation procedure can be complicated by the use of first- 
order differencing, since this slows convergence and makes it difficult to judge. Also, 

TABLE IV 

Grid Generation Tests, d;b = 63, 
with an Error in Coding in the Test Driver 

grid = 53 
temax = .394e -02 

9’ 
.205e - 02 
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TABLE V 

Complete Grid Generation Tests, di = 3 

grid = 53 9’ 173 333 
original lemaxt 100 = .394 ,205 .169 .160 
corrected temax* 100 = .304 .0821 .0208 .00533 
original pmx = .0630 .131 ,431 1.646 
corrected pmx = .0486 .0525 .0533 .0545 

the use of mixed first- and second-order differencing (boundary conditions, advec- 
tion terms at high Reynolds numbers, etc.) and/or any sort of conditional differenc- 
ing (e.g., upstream differencing) will complicate the validation procedure. The 
technique is applicable to validating the hosted equation codes as long as the 
method of grid generation can systematically refine the grid, which is the case for 
elliptic grid generating systems themselves; particularly, the technique is applicable 
to validating the extension of the elliptic grid technique recently developed by 
Brackbill and Saltzmann [3], which provides control over the grid properties of 
smoothness and orthogonality. 

As described above, the validation procedure simply gives a “yes” or “no” answer 
to the accuracy of the entire code: the transformation of the hosted equation(s), the 
substitution of the finite difference forms, the ensuing algebraic grouping, the FOR- 
TRAN encoding, the solution procedure for the discretized equations, and the 
correct formulation of the test problem. If the validation procedure produces a 
negative result, it is conceivable that the only information obtained is that there is 
an error, somewhere. For example, an error in the formulation could destroy the 
diagonal dominance of the matrix equation, resulting in an unstable or extremely 
slowly converging numerical procedure. 

In actual experience, the procedure has been readily modified, on an ad hoc 
basis, and has successfully helped in isolating and identifying errors. By judiciously 
building up or modifying the test problem, one can selectively turn off the cross- 
derivative terms, perform the trivial identity transformation, etc. Direct solvers for 
the hosted equation testing may also be used if iterative convergence is not 
attainable. We have found also that printing and inspection of all values of the sten- 
cil at one internal grid point aided de-bugging and validation. 

The cost of computer time to do the systematic convergence testing requiring can 
be significant, especially in 3D problems. However, it should be noted that the kind 
of code validation described here does not address the small parameter (high 
Reynolds number) problem, so the costs and difficulties associated with it do not 
contribute to the expense. In fact, designing the test problems, one specifically 
avoids large or small parameters, since these could mask errors in the treatment of 
the negligible terms. Also, if the code and the validation code are indeed correct, the 
use of the correct continuum solution as the initial condition for the iterative dis- 
crete solution will speed the testing process. (The test driver must require some 
minimal number of passes through an iterative solver, to avoid a false indication of 



282 STEINBERGANDROACHE 

iterative convergence.) Thus, the computer CPU time to perform these validation 
computations in the finest grid will be much less than that required to obtain a 
realistic (unknown) problem solution in that grid, when iterative solution methods 
are used. 

The results obtained strongly confirm that strong and inappropriate coordinate 
stretching can indeed increase the size of the truncation error, as is well known, but 
that the asymptotic order of the accuracy, as indicated by the reduction in trun- 
cation error resulting from systematic reduction in grid size, remains 0(h2) if cen- 
tered differences are used in the transformed equations. 

7. COMMENTS 

When we first started on this project we decided to implement the symbol 
manipulation code at as “high” a level as was possible. By high level we mean that 
we would give the symbol code the differential equation in some natural coor- 
dinates and then let the chain rule do its work. This produces a surprisingly large 
equation in a general coordinate frame. The equation 

(7.1) 

in fully expanded form, contains the number of terms indicated in the following 
table. 

CT n No. of terms 

constant 2 42 
constant 3 1611 
variable 2 50 
variable 3 1710 

Because of the size of this expression the remainder of the VAXIMA program 
became quite tricky. One of the earliest versions of the VAXIMA program for the 
n = 3 and variable 0 case, ran about 60 cpu hours on a VAX 1 l/780 running under 
UNIX and produced a SETM3 subroutine of approximately 1800 lines of dense 
FORTRAN code. There were some minor problems in getting the subroutine to 
compile. However, as soon as the subroutine compiled, it ran and produced correct 
results. (Surprisingly, round-off error was not a problem, despite the arithmetical 
complexity.) This was accomplished in less than a month of full-time work. It is, we 
believe, essentially impossible to duplicate the above results by hand in any amount 
of time. 

At this point it seemed that the run time of the symbol program was out of line 
with the amount of work being done by the symbol code. It was found that during 
the replacement of derivatives by atomic variables the simplilier was rearranging 
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the terms in the differential equations in an attempt to find simplification where 
none existed. At this point a code was written to break up all of the large 
expressions into pieces that contain at most a few terms. This prevented a major 
portion of the wasted algebra and reduced the run time of the VAXIMA code to 
under 3 cpu hours. 

The current approach teaches VAXIMA something about the structure of the 
intermediate expressions occurring in the chain rule. This produced the code listed 
in this paper and has a running time under 8 cpu minutes. 

The results in Section 2 which allowed us to write the faster VAXIMA programs 
are based on a formula for the derivative of the inverse of a matrix function. Thus if 
m(t) is a matrix whose entries depend on t, then 

d 
zm 

-l(t)= -m-‘(f) f!$.l m-‘(t). (7.2) 

It is interesting to note that VAXIMA does not know this formula. On the other 
hand, VAXIMA does know the derivative of the square of a matrix function, 

dm(t) dm(t) 
-$ m’(t)=m(t) T+T m(r). (7.3) 

As we noted in the introduction, we consider this paper an interim report on this 
project. We believe what has been accomplished so far provides a useful tool for 
constructing FORTRAN code. However, there are many problems still left. One 
important problem is to extend the VAXIMA code to handle general boundary 
conditions. Simple boundary conditions are now hand coded. It is also important 
to solve the problem of setting up intermediate expressions so that the evaluation of 
our formulas is more efficient. 

We believe that it is now possible to extend the ideas of this paper to more 
general equations including systems and evolution problems. It should be possible 
to handle other methods of generating coordinates including hyperbolic generation 
and to use higher order difference schemes. With the experience we have gained it is 
now possible to set up a package of symbol manipulation programs that would be 
useful to others working on problems similar to the problem studied here. Potential 
future uses include the following: deferred corrections for higher order accuracy 
and/or nonlinear terms in single and multiple equations; combination of pertur- 
bation methods and numerical methods; constitutive equation testing, in areas like 
turbulence modeling, non-newtonian fluids, soil mechanics, flow in porous media, 
gravitational theory; generation and analysis of new discrete forms via finite dif- 
ference, finite element, last squares, etc. methodologies; and application of coor- 
dinate transformations in conjunction with all the above. 

We anticipate that the practice of disciplines like computational fluid dynamics 
will be revolutionized in the next decade as the power of symbolic manipulation 
becomes widly recognized and applied. 

581/51/2-9 
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